Oxford Cambridge and RSA

GCE

Chemistry A

Unit H032/02: Depth in chemistry
Advanced Subsidiary GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2018

Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
AW	Alternative wording
ORA	Or reverse argument
n	Incorrect response response
BOD	Omission mark
CON	Conefit of doubt given
RE	Rounding error

SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Question			Answer	Marks	Guidance
1	(c)	(iii)	Use a (250 cm ${ }^{3}$) volumetric flask (instead of a beaker) \checkmark	1	IGNORE graduated flask
1	(d)	(i)	FIRST CHECK ANSWER ON ANSWER LINE If answer $=118\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ award 4 marks If answer $=108\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ award 3 marks $n(\mathrm{NaOH})$ $=0.112 \times \frac{25.0}{1000}=0.00280(\mathrm{~mol})$ $n(\mathbf{A})$ in $25.0 \mathrm{~cm}^{3}$ $=\frac{0.00280}{2}=0.00140(\mathrm{~mol})$ $n(A)$ in $250 \mathrm{~cm}^{3}$ $=0.00140 \times \frac{250.0}{27.30}=0.0128(\mathrm{~mol})$ Molar mass, $M(\mathbf{A})$ to nearest whole number. $=\frac{1.513}{0.0128}=118\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Throughout: IGNORE trailing zeroes in intermediate working, e.g. For $n(\mathrm{NaOH})$ ALLOW 0.0028 for 0.00280 ALLOW ECF from incorrect $n(\mathrm{NaOH})$ ALLOW ECF from incorrect $n(\mathrm{~A})$ OR $n(\mathrm{NaOH})$ ALLOW 3 sig fig up to full calculator display correctly rounded (0.012820512) ALLOW ECF from incorrect $n(\mathrm{NaOH})$ Possible ECFs for 3 marks $1.513 \div(0.00140 \times 250 / 25)=108$ $1.513 \div 0.00140=1081$ No $\div 2$ for $\mathrm{n}(\mathbf{A})$ - Molar mass $\mathbf{A}=59\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ Using mean titre of $26.45 \mathrm{~cm}^{3}$ from $\mathbf{1 c}(\mathbf{i})$ - Molar mass $\mathbf{A}=114\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ Using 27.3×0.112 in M1 and then 25.0 in M3 - Molar mass $\mathbf{A}=99\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$

Question			Answer	Marks	Guidance
1	(d)	(ii)	Structure of dicarboxylic acid $\mathrm{HOOCCH}_{2} \mathrm{CH}_{2} \mathrm{COOH} \text { OR } \mathrm{HOOCCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$ STRUCTURE MUST MATCH $\boldsymbol{M}_{\mathrm{r}}$ from answer to 1 d) i) (within 10 AMU)	1	ALLOW correct structural OR skeletal OR displayed formulae OR a combination ALLOW incorrect connectivity e.g -HO ALLOW ECF from incorrect molar mass in (d)(i) but only if $2 \times \mathrm{COOH}$ possible and M_{r} is a close match to (d) (i) within 10 AMU
			Total	13	

Question			Answer	Marks	Guidance
2	(c)	(i)	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{4} \checkmark$ Look carefully at $\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ - there may be a mistake	1	ALLOW subscripts ALLOW in any order i.e. $3 d^{10}$ after $4 s^{2}$ or after $4 p^{4}$ ALLOW upper case D, etc and subscripts, e.g. $3 \mathrm{~S}_{2} 3 \mathrm{P}^{6}$ DO NOT ALLOW [Ar] as shorthand for $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
2	(c)	(ii)	Gas B $\mathrm{H}_{2} \mathrm{Se}$ / Hydrogen selenide / Selenium hydride Equation $\mathrm{Na}_{2} \mathrm{Se}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{Se}$ All formulae and balancing	2	ALLOW SeH ${ }_{2}$ ALLOW correct multiples IGNORE STATE SYMBOLS DO NOT ALLOW $\mathrm{H}_{2} \mathrm{~S}$ for gas B BUT ALLOW ECF from $\mathrm{H}_{2} \mathrm{~S}$ for equation: $\mathrm{Na}_{2} \mathrm{~S}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{~S}$
			Total	8	

Question			Answer	Marks	Guidance
3	(a)	(i)	$\mathrm{Br}_{2}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{Br}^{-} \checkmark$	1	ALLOW multiples IGNORE state symbols
		(ii)	Iodine has a larger atomic radius lodine has greater shielding / more shells lodine has weaker / less nuclear attraction (on electron gained than bromine)	3	ORA ALLOW iodine is larger / bromine is smaller ALLOW electron added to a shell further from the nucleus ALLOW bromine has greater nuclear attraction IGNORE 'gained less easily' for 'weaker attraction' IGNORE references to ionisation energy DO NOT ALLOW mention of losing electrons for M3 ALLOW 'pull' for 'attraction' IGNORE just ‘greater attraction’ OR greater force

Question			Answer	Marks	Guidance
3	(b)	(i)	Disproportionation Oxidation AND reduction of same element/iodine OR lodine has been oxidised and lodine has been reduced Oxidation from 0 to +1 in HIO Reduction from $\mathbf{0}$ to $\mathbf{- 1}$ in $\mathbf{~ H I ~}$	3	ALLOW I or I_{2} for iodine IGNORE numbers around equation for oxidation states ALLOW 1- for -1 AND $1+$ for +1 NOTE (for iodine $/ I_{2}$) from 0 only needs to be seen once, does not need to be stated twice ALLOW 1 mark for 3 ox nos correct but no mention of words oxidation/reduction: $0 \text { in } \mathrm{I}_{2} \text { AND -1 in } \mathrm{HI} \text { AND +1 in } \mathrm{HIO}$ ALLOW 1 mark for species missing: lodine oxidised (from 0) to +1 AND iodine reduced (from 0) to -1
3		(ii)	Chlorine is toxic/poisonous OR forms halogenated hydrocarbons OR forms carcinogens/toxic compounds	1	ALLOW (reacts with hydrocarbons to) form carcinogens/toxic compounds IGNORE - chlorine causes cancer - harmful/dangerous - chlorine causes breathing problems
3	(c)		FIRST CHECK ON ANSWER LINE If answer $=(+) 431.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks If answer $=-431.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 1 mark (wrong sign) $\mathbf{2 \times H} \mathbf{C l}$ bond enthalpy correctly calculated $=+436+243+184=+863\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\checkmark}$ $\mathrm{H}-\mathrm{Cl}$ bond enthalpy correctly calculated	2	ALLOW to 3 SF i.e. 432

Question		Answer$+863 / 2=(+) 431.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\checkmark}$		Marks	Guidance
					ALLOW 1 mark for (+)247.5 / 248 (wrong expression) i.e. (436+243-184)/2
(d)	(i)	$\mathrm{Br}_{2}(\mathrm{I}) \rightarrow \mathrm{Br}_{2}(\mathrm{~g})^{\checkmark}$		1	
	(ii)	Endothermic AND Energy required to overcome induced dipole-dipole forces/London forces		1	Mark independently of 3 (d) (i) ALLOW endo to break intermolecular forces/bonds ALLOW bonds between molecules DO NOT ALLOW van der Waals' forces
			Total	12	

Question		Answer	Marks	Guidance
	(ii)	FIRST CHECK ON ANSWER LINE If answer $=6.79 \times 10^{7}(\mathrm{~kJ})$ award 4 marks If answer $=2.72 \times 10^{8}(\mathrm{~kJ})$ award 3 marks ($\mathrm{no} \div 4$) $n\left(\mathrm{NH}_{3}\right)$ $=\frac{5.1 \times 10^{6}}{17}=3.00 \times 10^{5}(\mathrm{~mol})$ Stoichiometry and $\Delta \boldsymbol{H}$ $1 \mathrm{~mol}^{\mathrm{NH}}$ 3 releases $\frac{905}{4}$ OR $226.25(\mathrm{~kJ})$ Energy released $\left(3.00 \times 10^{5}\right) \times \frac{905}{4} \text { OR } 67875000(\mathrm{~kJ})$ Final answer to 3SF AND standard form $=6.79 \times 10^{7}(\mathrm{~kJ}) \vee$ standard form AND 3 SF required	4	IGNORE (-) SIGN Throughout: IGNORE trailing zeroes in intermediate working, e.g. For $n\left(\mathrm{NH}_{3}\right)$ ALLOW 3×10^{5} for 3.00×10^{5} ALLOW ECF from incorrect $n\left(\mathrm{NH}_{3}\right)$ OR 905/4 ALLOW 3 SF up to calc value correctly rounded. Value will depend on intermediate rounding Common Errors $1.09 \times 10^{9}(x 4$ instead of $\div 4) 3$ marks $2.72 \times 10^{8}(\mathrm{no} \div 4) \quad 3$ marks 6.79×10^{1} (no tonnes $\rightarrow \mathrm{g}$) 3 marks
(b)		$\left(K_{\mathrm{c}}=\right) \frac{\left[\mathrm{NO}_{(\mathrm{g})}\right]^{4}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right]^{6}}{\left[\mathrm{NH}_{3}(\mathrm{~g})\right]^{4}\left[\mathrm{O}_{2}(\mathrm{~g})\right]^{5}}$	1	Square brackets required IGNORE state symbols

Question			Answer	Marks	Guidance
5	(a)	(i)*	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Correctly labelled diagram of reflux apparatus that works, with no safety problems AND An appreciation of most of the purification steps required to gain a pure sample There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Labelled diagram of apparatus (either reflux or distillation) but with safety/procedural problems OR clear diagram of reflux apparatus without labelling AND Some details of further purification steps There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Diagram of apparatus (reflux OR separation OR distillation) drawn with no labelling OR labelled diagram with significant safety/procedural AND / OR Few or imprecise details about further purification stages There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	Indicative scientific points may include: Apparatus set up for reflux: - round-bottom/pear shaped flask - heat source - condenser Detail: water flow in condenser bottom to top; open system. Purification - Use of a separating funnel to separate organic and aqueous layers Detail: Collect lower organic layer density greater - Drying with an anhydrous salt, Detail: e.g. $\mathrm{MgSO}_{4}, \mathrm{CaCl}_{2}$, etc. - Redistillation Detail: Collect fraction distilling at $102^{\circ} \mathrm{C}$.

Question			Answer	Marks	Guidance
5	(a)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = $12.6(\mathrm{~g})$ award 2 marks - $n(1$-bromobutane $)=0.150 \times \frac{61.4}{100}=0.0921(\mathrm{~mol}) \checkmark$ - Mass 1-bromobutane $=0.0921 \times 136.9=12.6$ (g) \checkmark 3 SF required	2	Common errors: $33.4(0.150 \times 100 / 61.4=0.244 \times 136.9)$ 1 mark ALLOW ECF for incorrect moles or incorrect M_{r} of 1-bromobutane (provided answer is to 3 SF) DO NOT ALLOW 6.82 (using M_{r} of butan-1-ol) ALLOW calculation using masses, e.g. - Theoretical $=0.150 \times 136.9=20.535(\mathrm{~g})$ (ALLOW 20.535 rounded back to 20.5) - Actual mass $=20.535 \times \frac{61.4}{100}=12.6(\mathrm{~g}) \checkmark$ (20.5 also gives 12.6)
	(b)		Tangent on graph drawn at approximately $t=30 \mathrm{~min}(\pm 10 \mathrm{mins}) \checkmark$ Calculation of rate $=$ Gradient (y / x) of tangent drawn	2	DO NOT ALLOW interpolation (taking a direct reading from graph), answer must be derived from taking a gradient ALLOW ecf from incorrectly drawn tangent Tolerance: Readings from y axis should be $\pm 0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ (i.e. within 1 square) Readings from x axis should be ± 5 minutes (i.e. within 0.5 of a square) IGNORE units IGNORE sign
			Total	10	

Question Answer		Marks			
$\mathbf{6}$	(a)	steam AND Acid/ H^{+}(catalyst) \checkmark	$\mathbf{1}$		
	(b)	(i)	1,2 -dibromo-1,1-dichloroethane \checkmark	$\mathbf{1}$	

Question			Answer	Marks	Guidance
6	(b)	(ii)	 1st curly arrow (from ANY alkene) Curly arrow from double bond to Br of $\mathrm{Br}-\mathrm{Br} \checkmark$ DO NOT ALLOW partial charge on $\mathrm{C}=\mathrm{C}$ 2nd curly arrow Correct dipole on $\mathrm{Br}-\mathrm{Br}$ AND curly arrow for breaking of $\mathrm{Br}-\mathrm{Br}$ bond \checkmark 3rd curly arrow Correct carbocation with + charge on C with 3 bonds AND curly arrow from Br^{-}to C^{+}of carbocation \checkmark DO NOT ALLOW $\delta+$ on C of carbocation OR i.e. ALLOW carbonium + on either C atom DO NOT ALLOW half headed or double headed arrows but allow ECF if seen more than once	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC For curly arrows, ALLOW straight or snake-like arrows and small gaps (see examples): 1st curly arrow must - go to a Br atom of $\mathrm{Br}-\mathrm{Br}$ AND - start from, OR be traced back to any point across width of $\mathrm{C}=\mathrm{C}$ 2nd curly arrow must - start from, OR be traced back to, any part of ${ }^{\delta+} \mathrm{Br}-$ Br^{8-} bond - AND go to $\mathrm{Br}^{\delta-}$ 3rd curly arrow must - go to the C^{+}of carbocation AND - start from, OR be traced back to any point across width of lone pair on : Br^{-} - OR start from - charge on Br^{-}ion (Lone pair NOT needed if curly arrow shown from - charge on Br^{-})

Question			Answer	Marks	Guidance
6	(c)	(i)	Correct polymer with side links and brackets \checkmark Equation balanced with n TAKE CARE of ' n ' position on both sides of equation.	2	For repeat unit, - displayed formula required - 'side bonds' required on either side of repeat unit from C atoms - ALLOW section containing more than one repeat unit DO NOT ALLOW ECF from incorrect repeat unit n on LHS at any height to the left of the formula n on RHS must be subscript
	(c)	(ii)	Advantage (1 mark) Energy production / (energy) used to produce electricity v Disadvantage (1 mark) Formation of $\mathrm{HCl} /$ products of combustion cause acid rain OR Formation of $\mathrm{CO}_{2} /$ gases that cause global warming / greenhouse gases OR Formation of $\mathrm{CO} \checkmark$	2	ALLOW reduced use of fossil fuels ALLOW less landfill / less harm to wildlife ALLOW chlorine/Cl OR Cl ${ }_{2}$ ALLOW toxic/poisonous waste products
			Total	9	

Question	Answer	Marks	Guidance
7*	Please refer to the marking instructions on page 5 of the mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) A comprehensive description including most of the evidence to justify the correct structure of \mathbf{F} (accept cis or trans). There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) The candidate attempts all three scientific points, but explanations are incomplete. OR Explains two scientific points thoroughly with few omissions. AND an attempt at a feasible structure based on deduction from correct molecular formula There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) The correct empirical formula AND a simple description based on at least one of the main scientific points. OR The candidate explains one scientific point thoroughly with few omissions. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks \quad No response or no response worthy of credit.	6	LOOK AT THE SPECTRA for labelled peaks Indicative scientific points may include: Empirical formula - empirical formula $=\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}$ IR and spectra and molecular formula - infrared absorption; 1630-1820 cm^{-1}, due to $\mathrm{C}=\mathrm{O}$ (aldehyde/ketone/carbonyl group) - molar mass $=70 \mathrm{~g} \mathrm{~mol}^{-1}$ (mass spectrum molecular ion peak $m / z=70$) - molecular formula $=\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}$ Functional groups, structure and stereochemistry - alkene / $\mathrm{C}=\mathrm{C}$ - aldehyde / $-\mathrm{CHO}\left(\mathrm{C}_{3} \mathrm{H}_{5}{ }^{+}\right.$fragment) - mass spectrum; peak at 41 due to $\mathrm{C}_{3} \mathrm{H}_{5}{ }^{+}$(loss of CHO) - E/Z or cis-trans isomer: E/Z or cis-trans isomer: cis trans (correct structure)
	Total	6	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2018

